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Mixed sets of functions consisting of ls Slater orbitals and floating spherical Gaussians are 
proposed as expansion functions for ab initio variational type calculations for small molecules. After 
the discussion of the basic computational methods the results of some trial calculations for the ground 
state of the helium atom are presented. 

Fiir ab initio Rechn~angen vom Variationstyp werden im Falle kleiner Molekiile gemischte 
Funktionss~itze, die aus ls Slater-Orbitalen bestehen, vorgeschlagen. Nach einer Diskussion der grund- 
legenden Rechenmethoden werden die Resultate von einigen Proberechnungen f'tir den Grundzustand 
des Heliumatoms geschildert. 

Introduction 

The choice of basis functions is of fundamental importance in all ab initio 
variational type atomic and molecular calculations. From the purely theoretical 
viewpoint the basis functions should ideally form a complete set; from the com- 
putational viewpoint the functions should also possess good convergence 
properties, since in practice the expansions need to be as compact as possible. 
Furthermore, one must be able to evaluate all the basic integrals which arise in 
the course of the calculation with reasonable ease in order to make the 
computational work worth attempting. 

The most widely used functions in atomic calculations have been the Slater 
type atomic orbitals (STO's), which have the advantage over other sets of 
functions in that they closely resemble atomic self-consistent orbitals [1-3]. 
STO's have found wide application in molecular calculations as well, although 
in the case of the more complex systems the problems associated with the 
evaluation of multicentre integrals often proves prohibitive, as most of these 
integrals cannot, in general, be evaluated in closed form. Gaussian type orbitals 
(GTO's) as expansion functions were first introduced by Boys [4], who showed 
that all the integrals which arise in a variational energy calculation could be 
calculated with reasonable ease. However, compared with STO's, Gaussians 
suffer from the disadvantage that, because they are not so closely related to self- 
consistent orbitals, their convergence properties are considerably poorer. This 
results in lengthy expansions. The basic Is-type Gaussian function, defined as 

~p = (2~/7~) 3/4 exp(--~r 2) ~ being a constant, called the orbital exponent, 
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differs most from a ls Slater orbital at the origin, lacking a cusp there. A ls STO 
takes the form 

lp = (~3/g)1/2 exp(-  er). 

Consequently, a wavefunction constructed from Gaussians does not obey the 
nuclear cusp condition [5] and generally exhibits the worst behaviour at and near 
the nuclei. Hence, just to ensure a reasonably good description of the electron 
density in the regions near the nuclei, a relatively large number of Gaussians is 
needed as expansion functions. 

The mixed basis sets advocated here arise naturally. Consider a wavefunction 
which is constructed from a small number of Slater functions, and which gives a 
reasonably good electron distribution, especially in the regions near the nuclei. 
To correct the electron density further, and to allow for electron correlation, 
Gaussians may be just as efficient as Slater functions, since there is no cusp 
requirement for the additional basis functions. The Gaussian functions could be 
placed at such points in space so as to be energetically the most effective. 
Furthermore, it is plausible to think that p- and d-type Slater functions, which 
are only used for correction purposes, may be successfully replaced by Gaussian 
functions of the same symmetry or even by Gaussian lobe functions. The latter 
are defined as normalized linear combinations of spherical Gaussians centred at 
different points in space, their transformation properties resembling those of 
p-, d- and possibly higher functions. 

The use of such mixed basis sets was first proposed by Allen [6]. 
Calculations were first carried out by Riera and Linnett [7] for the linear, 
symmetric H3 molecule. Because their results were encouraging, a more 
systematic and detailed study of mixed basis sets has been made. 

In this paper we report a series of trial calculations on the helium atom, 
using various mixed basis sets consisting of just ls Slater and floating spherical 
Gaussian orbitals. The first molecular calculation was carried out on H2 and this 
was followed by calculations on the more complex systems of H 3 and H4. The 
results are reported in some forthcoming papers. The calculations are ab initio, 
all the integrals having been evaluated to sufficient accuracy to make the re- 
suiting energy accurate to 1 part in 10 6. The method of configuration interaction 
(CI) was employed, i.e. a variational approach, minimizing the energy of a 
multiconfigurational wavefunction consisting of Slater determinants which were 
constructed from an orthonormalized set of symmetry orbitals. The final wave- 
functions are generally expressed in terms of natural orbitals, obtained by the 
diagonalization of the spinless first order reduced density matrix. 

Computational Methods 

A typical CI calculation consisted of three main stages: 
(a) Evaluation of the basic integrals; 
(b) Construction of an orthonormal set of symmetry orbitals and the 

transformation of the integrals to this new basis; 
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(c) Construction of the required configurations and the Hamiltonian matrix 
followed by its diagonalization yielding the energy and the corresponding wave- 
function. Calculation and diagonalization of the spinless first order reduced 
density matrix to give the natural orbitals and their occupation numbers. 

In the larger calc, ulations, e.g. in the case of H3 and H4, steps a, b and c were 
carried out separately, making use of the magnetic tape and disc facilities to 
store the integrals and other intermediate results. The He and H2 calculations 
could easily be performed in a single run. 

The computer used for our calculations has been the Cambridge University 
Computer Laboratory's Titan computer, with a maximum available fast store 
of 40000 words, requiring approximately 5 psec for addition or subtraction and 8 
and 25 psec for multiplication and division respectively, in variable mode. All the 
calculations have been carried out in single precision, which is 11 significant 
figures in Titan. 

The various computational steps will now be discussed in more detail. 

a) Evaluation of the Basic Integrals 

The integrals to be evaluated are the overlap, kinetic energy, nuclear 
attraction and electron repulsion integrals in a mixed set of ls Slater and 
Gaussian type functions. 

All the integrals involving only spherical Gaussians were readily calculated 
according to the expressions given by Boys [4]. The evaluation of the auxiliary 
functions Fo (t) which occurs in the three-centre nuclear attraction and electron 
repulsion integrals is discussed in Appendix 1. The overlap, kinetic energy, one and 
two centre nuclear attraction, Coulomb and hybrid integrals involving only the 
Slater functions were calculated using the closed formulae of Roothaan et al. 
[8-101. The remaining integrals, i.e. the three centre nuclear attraction, 
exchange, three and four centre electron repulsion integrals involving only Slater 
functions and all the mixed integrals, i.e. involving both types of functions, were 
evaluated by expanding the Slater functions in terms of Gaussians, followed by 
term-by-term integration and summation. Huzinaga's expansions were utilized 
for this purpose [11]. In order to achieve an accuracy of 1 in 106 in the total 
energy, all the one-electron integrals were evaluated using 10 Gaussians to 
expand the Slater functions. 8 Gaussians were generally used when evaluating 
two-electron integrals, although in some cases 4 Gaussians proved sufficient; 
for example, in the He calculations. Most integrals were accurate to within 1 
in 106, although some multicentre 2-electron integrals were found to be less 
accurate (,,~ 1 in 104). The effect of this inaccuracy on the energy would, however, 
be very small. To illustrate the accuracy and convergence properties of the 
integrals calculated by the Gaussian expansion technique, the values of some ex- 
change integrals are listed in Appendix 2. 

The one electron integrals were stored as two-dimensional arrays in the 
computer, although only the upper (or lower) triangle needs to be evaluated as a 
result of the symmetric nature of these arrays. The two electron integrals were 
generated and stored as a one-dimensional array making use of the fact that a 
1" 
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real orbital integral given as 

[ijlk/] = I g~ (1) rpj(1) Ok (2) gO, (2)r? 1 d72 1 dz 2 

is unaffected by the interchanges of i and j, of k and l and of ij and k l. 
In the calculation of the integrals full use was made of spatial symmetry. 
In case of a large basis the integrals could be generated in several successive 

runs on the computer and then stored on magnetic tape or disc for future use. 

b) Construction of Orthogonal Symmetry Orbitals 

Whenever possible the basic orbitals were transformed so as to give an 
orthonormal symmetry orbital basis. 

In the case of Gaussians which are not centred on the nuclei the symmetry 
orbitals usually transform according to the irreducible representation of some 
lower symmetry point group as, for example, in the case of He when 6 Gaussians 
are used to construct three p-type orbitals. The resulting orbitals, usually called 
Gaussian lobe functions, transform according to the Oh point group. When 
expanded about the origin the lobe functions are found to include contributions 
from higher spherical harmonics [12]. Consequently, a He wavefunction which is 
partly constructed from such lobe functions will have octahedral rather than 
spherical symmetry. However, this is not expected to introduce serious difficulties, 
since such functions are induced only to allow for correlation and would not 
affect the electron distribution, which ought to be symmetrical, to a significant 
extent. 

Two methods of orthonormalization were used, the Schmidt method [13] 
and L6wdin's symmetric orthogonalization method [14]. Both were found to 
function satisfactorily, although the Schmidt method was preferred in the later 
work, when it was convenient to enlarge a given orbital basis by the addition of 
Schmidt orthogonalized orbitals to the existing orthonormal set. 

c) Transformation of Integrals 

Since the Slater determinants in the CI expansions are constructed from an 
orthonormal set of symmetry orbitals, the integrals need to be transformed to the 
new basis. 

The method used is a standard one, explained in detail by Harris [15] 
for example, it makes use of intermediate arrays as much as possible to reduce 
comp. time requirements. In the case of two-electron integrals, for example, the 
number of computational steps is proportional to n 5, n being the number of 
basis functions used, as opposed to n 8 which would result if the elementary 
transformation method was used. 

This part of the calculation is generally very time consuming, as well as 
having large store requirements. Hence, for a basis which contains more than 
12 orbitals it was generally carried out separately, making use of tape and disc 
facilities as much as possible to store the integrals and parts of the intermediate 
working arrays. 
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d) The CI Wavefunction and the Hamiltonian Matrix 

A CI wavefunction takes the form 

T = Z Ci ~i (1) 
i 

where {~} is an orthonormal set of configurations, each with the correct 
spatial and spin symmetry properties; corresponding to the state under study, 
{Ci} is a set of constants chosen so as to minimize the total energy. 

For the singlet two-electron case there are two types of configurations, 

= I (2) 
= 2-1 /2  {ko, jl + i 0J  l} ' i=/=j 

where [qh~j[ is a normalized Slater determinant constructed from the spin 
orbitals ~oi and Cpj with ~ and fl spins respectively. 

The various matrix elements between such configurations are easily calculable, 
using the set of transformed integrals. 

The 3 and 4 electron wavefunctions are discussed in the relevant later 
papers. 

The lowest eigenvalue of the Hamiltonian matrix and the corresponding 
eigenvector, characterising the ground state of a given system, were calculated 
using Nesbet's method [16]. 

e) The Natural Orbitals [17-18] 

The set of natural orbitals {Zi} are defined by the transformation 

zi  = vki k (3) 
k 

where {~Pk} is the set of basis functions and U is the unitary matrix which 
diagonalizes the spinless first order density matrix, given in the ~Pk representation. 

The elements of the diagonalized density matrix are known as the 
occupation numbers of the natural orbitals, indicating the relative importance 
of each orbital in the CI expansion, their sum being equal to the number of 
electrons. 

Natural expansions have the quickest convergence in any given basis and at 
any point in the expansion maximum overlap with the exact wavefunction is 
assured. Hence, the first term in a natural expansion closely resembles the 
Hartree-Fock wavefunction within the same basis. The total wavefunction to a 
good approximation is thus conveniently separated into SCF and correlation 
parts. Consequently, we introduce a quantity called apparent correlation energy , 
defined as the difference between the calculated total and the SCF energies, the 
latter estimated by the energy associated with the first term in the NO 
expansion. The magnitude of the apparent correlation energy can then serve as a 
guide as to the "amount" of correlation allowed for by a given CI wavefunction. 
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In the case of 2-electron systems the calculation of the natural orbitals is 
particularly simple. Since the singlet CI wavefunction can be written as 

T = 2-1/2(efl - fiR) ~ Cij~0~(1) q~j (2) (4) 
i , j  

the spinless first order reduced density matrix is simply 

V(I[ r)  = Y~ (CC+),  ~o,(1) ~0-(1'). (5) 
i , j  

Since C and CC + are both diagonalizable by the same unitary transformation 
it suffices to diagonalize C to yield the natural orbitals. Expressed in terms of 
NO's the total wavefunction is also in diagonal form, 

= 2-1/z(~fl - flcz) Z mi Z,(1) Zi(2) �9 (6) 
i 

The occupation numbers ni of the NO's are just 2m z. 
If the number of electrons is greater than two the calculation of the NO's 

is carried out by the diagonalization of the density matrix. This will be discussed 
in the forthcoming papers on H a and H 4. 

Calculations for the Ground State of the He Atom. 
Two and Three Orbital Calculations 

Only radial functions were used in these calculations, orthonormalized by 
LSwdin's method, the total wavefunction in each case including all the 
possible configurations. All the orbital exponents were optimized by Powell's 
[21] method. Details of the various basis sets and the corresponding energies 
that were obtained are presented in Table 1. For the Gaussian functions the 
square root of the orbital exponents is also given so as to make the comparison 
with exponential functions simpler. (The "range" of a Gaussian is proportional 
to e-1/2, e being the exponent, as opposed to an exponential function whose 
range is proportional to ~-1 [22]). The wavefunctions are given in Table 2, ex- 
pressed in natural form, i.e. according to Eq. (6). 

The energy results clearly indicate that the main shortcoming of a Gaussian 
basis lies in the poor description of the electron-nucleus interaction. This is due 
to the fact that a Gaussian is not a solation of the Schr6dinger equation for the 
hydrogen-like problem, resulting in an electron distribution which is far from 
correct, consequently severely underestimating the magnitude of the nuclear 
attraction energy. The electron repulsion energy is much more independent of 
the basis used, whereas the kinetic energy also shows large fluctuations, paralleling 
those in the total energy, in accordance with the Virial Theorem [25]. 

The energy values of the NO expansions truncated to contain only the 
first, leading term display the same tendencies as the total energies, but the 
variations shown by the apparent correlation energy are much smaller. It is 
evident that wavefunctions constructed wholly or in part from Gaussians are 
poor as a result of unsatisfactory SCF parts and not because they describe 
correlation badly. Hence the need for a large basis when using Gaussians. It is 
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Table 2. The wavefunctions resulting from the 2 and 3 orbital He calculations expressed in natural 
form; the natural orbitals given in terms of the original basis 

Calculation Coefficient Natural 
Ref. of configuration orbital 

)~,(1) Xi(2) Z, 

Coefficient of atomic orbital 

1 2 3 

1 0.999289 1 0,820139 0.290118 
-0.037710 2 -0.825167 1,126659 

2 0.999146 1 1.187270 -0.19555 
-0.041308 2 -3.59639 3.78225 

3 0.997749 1 0.692164 0.338112 
-0.066644 2 -1.896261 1.990120 

4 0.998287 1 0.651603 0.414226 
-0.058385 2 -0.058385 - 1.064087 
-0.003710 3 0.441146 -1.078287 

5 0.998805 1 1.203741 -0.014630 
-0.048251 2 -2.736116 1.263159 
-0.007810 3 -3.293699 -0.565796 

6 0.997846 1 0.760462 0.284959 
-0.065279 2 -1.948360 1.533277 
-0.006558 3 -0.253137 -4.005462 

7 0.997749 1 0.828095 -0.055060 
-0.066644 2 -2.666421 5.914587 
-0.007489 3 3.996217 -25.11450 

0.083418 
1.044166 
1.218240 

-0.200268 
1.945947 
3.827433 

-0.020178 
0.550329 
4.306479 
0.254221 

-3.205106 
21.70878 

noteworthy that the wavefunction built from two Slater functions and one 
Gaussian is energetically as good as the one from three Slater functions. Hence 
it ought to be possible to construct good wavefunctions using just a few Slater 
type orbitals and possibly a larger number of Gaussians as expansion functions, 
the latter used as correction functions to improve the SCF part of the wave- 
function further and to provide the extra flexibility to describe electron 
correlation. 

The best energy, -2.87852 a.u., from calculation 6 compares favourably with 
the estimated radial or S limit of -2.879028 a.u. [233, despite the small basis. 
The energy of the truncated NO expansion from the same calculation, 
-2.86149a.u., shows similar agreement with the exact SCF energy of 
-2.86168a.u. [243. The best calculated value for the apparent correlation 
energy is -0.01703 a.u., very close to the accurate radial correlation energy of 
-0.01734 a.u. 1 

The coefficients of the configurations from the various calculations show the 
strong convergence usually displayed by the occupation numbers of NO's. The 
magnitude of the first coefficient, being associated with the SCF part in the wave- 
function, shows an inverse type relationship with the apparent correlation energy. 
This behaviour is to be expected since higher configurations represent the 
correlation part in the wave-function, the coefficients indicating their relative 
importance, and as they become larger the first coefficient needs to decrease 
in order for the total wave-function to be normalized. 

1 The apparent correlation energy is not, in general, an upper bound to the true correlation 
energy, hence it needs to be used with caution, 
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Eight  Orbital  Calculat ions  

In these calculations Gaussian lobe functions were introduced in order to 
test their effectiveness in the description of angular correlation. The complete 
orbital basis consists of two ls Slater orbitals centred on the nucleus and six 
Gaussians positioned octahedrally around the nucleus as shown in Fig. 1. 

The various linear combinations of the Gaussians defining the lobe functions 
are symmetry orbitals which transform according to the irreducible representa- 
tions of the Oh point group; they are listed in Table 3. The symmetry properties 
of the orbitals are also tabulated together with the type of orbitals they are to 
represent. 

The first CI wavefunction was constructed from the two ls Slater orbitals 
and the Px, Pr, Pz-typ e lobe functions, resulting in 6 configurations. (The number 
of configurations could be reduced to 4, since the configurations PxPx, PyPy, and 
PzP= could be grouped together.) The exponent and position of the Gaussians, 
as specified by the distance d from the origin, were optimised, the exponents 
of the Slater orbitals having been kept at their optimum values as found in the 
relevant 2-orbital calculation. During the optimization procedure it became clear 

Z 

G1 

X -- 
G3 y 

Fig. 1. Distribution of the Gaussians in the eight orbital He calculations 

Table 3. The unnormalized symmetry orbitals formed from the octahedrally positioned Gaussians, 
G 1 - G~ 

Symmetry orbitals Symmetry 
type 

qh = G1 + G2 + G3 -~ G4 -t- G 5 + G 6 alg (s) 
rP2 = G1 - G2 tlu (Px) 
~03 = G3 - G4 qu (P~) 
94 = as - 66 tlu (pz) 
q g s = - G 1 - G 2 - G 3 - G 4 + 2 G ~ + 2 G 6  e o (&_~) 
q~6 = G1 + G2 - G3 - G4 eg (d~2 _ : )  
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that numerical errors may arise as a result of two Gaussians coming too close 
together, introducing approximate linear dependency into the basis. The total 
energy is, however, quite insensitive to the separation of the Gaussians, hence to 
avoid the possibility of round-off errors it was decided to keep the Gaussians 
well separated in future calculations. A distance of 0.2 a.u. from the origin was 
settled on as a reasonable and safe value. 

The second calculation made use of all the possible configurations, a total 
of 11, that could be constructed from the given 8 orbital basis. The orbital 
exponents were left unchanged from the previous calculation. 

Details of the basis and the calculated energies from these calculations are 
given in Table 4. 

The energy calculated using the 6 configuration function gives an improvement 
of 0.01719 a.u. over the function which contains just two Slater orbitals, this 
representing almost 70% of the total angular correlation energy. With a basis 
of two ls and three 2p STO's Taylor and Parr [26] obtained an energy of 
-2.89518 a.u., only marginally better than our value. 

The inclusion of the remaining three Gaussian lobe functions results in a 
significant decrease in the energy, bringing it within 4 kcal/mole of the Pekeris 
value of -2.9037244 a.u. [27]. The wavefunction from the 11 orbital calculation, 
given in terms of NO's, is presented in Table 5. 

Conclusion 

The results of the He calculations with mixed basis sets are very encouraging. 
Clearly, Gaussians are efficient when used to correct a wavefunction constructed 
from Slater orbitals, which is at least of SCF accuracy. In atomic calculations, 
of course, there is no need to use Gaussians since they offer no advantage over 
Slater functions. For molecules, however, mixed sets of the kind used in these 
calculations may provide a convenient and sufficiently accurate method to obtain 
energies and possibly other properties of interest as well. The success of 
Gaussian lobe functions in the description of angular correlation is especially 
gratifying since it is the p and higher Slater orbitals which prove most 
troublesome in molecular calculations. 
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Appendix 1 

Evaluation of the Auxiliary Function F o (t) 

The auxiliary function Fro(t) defined as 

1 
fm( t )=Iu2"exp( - tu2)du  ( t > 0 ; m  = 0, 1,2 . . . .  ) 

o 

occurs in the nuclear attraction and electron repulsion integrals between 
Gaussian functions. 
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In case of ls type Gaussians only Fo(t ) needs to be evaluated and the 
method used rests on the power series expansion [22] 

Fo(t ) = e x p ( - t )  ~ 2till x 3 x 5 . . . ( 2 i + 1 ) .  
i = O  

For t ___< 16 the number of terms required in the summation is reasonably small 
(__< 38) to achieve the specified accuracy of one part  per million, whereas for 
larger values of t it is possible to make use of the asymptotic expansion 

V(1/2) 
Eo(t) -  2tl/2 ~o(t) 

F(1/2) 
since ~o (t) < ~ e x p ( -  t) 

2t 1/~ = z~ " 

Hence Fo(t)=nl/2/2t 1/2 which is accurate to more than six significant 
figures. 

This method was found to be quite satisfactory, requiring, on the average, less 
than a millisecond comp. time. 

Appendix 2 

Exchange Integrals [1S A 1SB] 1S A 1SB], Calculated by the Gaussian Expansion 
Technique, Compared with the Accurate Values [28], as a Funtion of the Inter- 

nuclear Separation R. All Orbital Exponents are 1.00 

R (a.u.) Number of Gaussians Calculated value Accurate v~ue 
in expansion ofintegral ofintegr~ 

1.0 4 0.436694 0.436651 
6 0.436653 
8 0.436652 

10 0.436652 

1.5 4 0.296836 0.296835 
6 0.296838 
8 0.296836 

10 0.296836 

3.0 4 0.058452 0.058508 
6 0.0585131 
8 0.0585074 

10 0.0585080 

5.0 4 0.00370653 0.00371704 
6 0.00371797 
8 0.00371730 

10 0.00371667 

The comp. times required to evaluate such integrals were 1.5, 7, 22 and 
49 sec for the 4, 6, 8 and 10 Gaussian expansions respectively. 
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